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‘National Energy Research Supercomputer Center
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ABSTRACT

Many computational models of plasmas, and other physical systems, have
employed the particle-in-cell (PIC) method in which simulation particles are
followed in the self-consistent physical fields represented on a grid. In the
case of plasmas such models have allowed detailed investigations of kinetic
phenomena which are difficult or impossible to model with a fluid treatment.
These particle codes conventionally store the simulation particle informa-
tion in tables in which the particle spatial positions tend to be random with
respect to the position in the table. With the advent of vector computers
the relative efficiencies of particle codes versus fluid codes began to suffer
and now with the development of parallel computers these kinds of codes
- are in need of radical redesign to enable them to run efficiently. Problems
associated with excessive accessing of memory, indirect indexing, and with

many-to-one mappings in the deposition phase can make these codes inef- -

ficient on vector-serial, vector-parallel, and massively parallel machines. In
the HOPS (Hybrid Ordered Particle Simulation) code we employ a sorting
scheme to keep the particles ordered with respect to their spatial positions.
By doing so, we have reduced memory accesses, recovered substantial direct
indexing, and most importantly removed the many-to-one mapping prob-
lem. Even with the overhead of sorting and reordering the particle tables, we
have developed a code which is most efficient on vector-serial machines and
which linearly scales to various kinds of parallel computers. We verify the
operation of HOPS by presenting example problems involving ionospheric
plasmas and ones of interest in magnetic fusion research. This paper focuses
on the Cray C-90 vector-parallel computer but also presents information on
massively parallel implementations.

1 Introduction

Perhaps the simplest and most general methodology for simulating the be-
havior of plasmas is to follow the charged particles in their self-consistent
electromagnetic fields.[1,2,3] To do this, one solves the coupled Newton-
Maxwell equations for the modeled problem. Though straightforward, this



approach is very intensive computationally both in regard to storage and
time requirements. Thus, historically, most models of plasmas have em-
ployed a fluid representation inorder to make the calculations affordable.
These particle simulation models are employed in the studies of astro-
physics, particle accelerators, solid state physics, molecular dynamics, as
well as plasma physics. In this paper we introduce the HOPS code which
has been designed to operate efficiently in contemporary scientific comput-
ing environments. Although the presentation is given with respect to a
version running on the Cray C-90 vector-parallel machine we also indicate
its relevance to massively parallel computers.

A typical particle code is executed in four phases:

1. Interpolate the electromagnetic fields from the grid to the par-
ticle positions (field interpolation) :

2. Using these fields, push particles by advancing positions and
velocities according to Newton’s law (push)

3. VInterpola,te from particles to deposit charge and current densi-
ties on the grid (deposition interpolation)

4. Solve the Maxwell field equations on the grid (solve)

Most particle codes are actually hybrid codes in which some of the species
are treated as fluids. The codes we study here are all of this hybrid type.
Except for the special fluid model used for the electrons, we shall not de-
scribe the treatment of the other fluid components except to note that we
use the FCT method pioneered by Boris[5] as developed by Zalesak.[6]

It is true for many particle codes, and it will be true here as well, that
the phase of deposition interpolation will severely constrain our strategy for
optimization of HOPS. By optimization we mean to include such techniques
as vectorization and parallelization in addition to the usual considerations.
Issues arising from the first three phases have driven the choice of the scheme
we employ, but it turns out that our field solve optimizes very well in the
domain decomposition that results.

Prior to 1985 most particle codes were only partially vectorized, partly
because the machines available had limited vector hardware and partly be-
cause the algorithms were not well developed. A notable exception to this
was the work of Buneman et al[7] who wrote highly optimized particle codes
in Cal assembly language for the Cray-1 computer. This situation began
to change with the introduction of vector multiprocessor machines such as
the Cray X-MP, Cray-2, Cray Y-MP, as well as some of Japanese manu-
facture. In the late 1980’s, nearly all of the restrictions on vectorization
and parallelization (multitasking) were removed. The hybrid particle code
QN3D, with fluid electrons and particle ions, pioneered several of these
developments[8] and was fully vectorized and parallelized for execution on
a four processor Cray-2.



The first phase of the time step, as indicated in the list above, requires
the interpolation of the fields, known on the mesh, to the particle posi-
tions. Since the particles, stored in so-called particle tables, tend to become
randomly distributed in space, it follows that the fields used to move.the
particles must be accessed randomly from the computer memory. In terms
of the written algorithm this is expressed in terms of an indirect index struc-
ture, such as EX(I(N),J(N),K(N)). (Here I(N),J(N),K(N) represents a grid
point neighboring the Nth particle in the table and EX is the = compo-
nent of the electric field.) The push phase is either combined with the field
interpolation or is executed separately. It is the third phase, the deposition
interpolation, which has frustrated optimization the most. The problem lies
in the fact that several particles can contribute to the charge and current
densities at each grid point. This has the form of a many-to-one mapping.
Any attempt to deposit the particles’ contributions concurrently can lead
to a conflict; this conflict prevents most attempts to vectorize or parallelize
the deposition interpolation.

In the last phase of HOPS we solve an approximate form of Maxwell’s
" field equations. The field solve algorithm we employ is iteratively implicit
- which really means it is explicit at each iteration and therefore easily vec-
torized and parallelized. 4

1.1 Organization of this Paper

Following this Introduction we proceed, in Section II, to review various
strategies that have been proposed for improving the performance of PIC
codes. In section III we describe the original HOPS algorithm, which goes
by the name OSOP (ordered storage ordered processing), and then go on
to describe the version designated as RSOP (random storage ordered pro-
cessing.) The vector-parallel generalizations are given in IV and our pre-
Maxwell field solver is presented in V. Test problems are treated in Section
VI while results and conclusions are offered in Section VII.

2 Strategies for High Performance PIC Codes

In our earlier attempts to improve the performance of PIC codes we were
primarily interested in improving their serial performance on traditional
vector supercomputers. In fact, the Cray-2, the Cray Y-MP, and the Cray
C-90 have been the machines on which our studies have been performed. As
a secondary consideration we also knew that we’d eventually want to run our
applications in parallel so we tried to develop our serial code so that it would
be amenable to parallelization at a later date. And from a standpoint of
cost-effectiveness we have followed the advice that it is almost always better
to optimize the serial performance of an algorithm before parallelizing it.
Our first observation about traditional PIC codes was that the arithmetic
units of the CPU were mostly idle in the Cray-2 environment; most of the



work going on was the random accessing of the common memory to bring
in or farm out quantities associated with the grid. It was also observed that
each grid quantity was accessed many times in each time step; in fact each
was accessed as many times as there were particles in the adjoining grid
cells. So there were two problems in accessing the memory:

1. The memory locations were effectively random.

2. Each memory location was accessed many times in a given com-
putational time step. '

In subsequent tests of PIC codes on the Cray Y-MP and on the Cray
C-90 we have found that the extremely “agile” memories of these two ma-
chines result in only a small degradation of the performance from excessive
accessing of memory. Since the behavior of the memories of massively par-
allel computers is not well known, it is not clear whether the accessing of
memory will “pace” the calculations or not.

- 2.1 Vectorization Including Gather-Scatter

The indirect index structure, such as EX(I (N ),J (N),K(N)), which frustrated
vectorization on the earlier vector computers, is now indirectly vectorized
- on most of the contemporary vector computers by gather and scatter oper-
ations. The gather mechanism is used to load memory items into the CPU
vector registers while the related scatter operation is used to store into the
memory from the CPU vector registers. The old QN3D code employed the
gather procedure to allow vectorization and used multitasking to carry out
the field interpolation phase. We note that this form of indirect vectoriza-
tion is considerably slower, on the Cray-2, than normal direct vectorization
of constant stride arrays; at best the gather operation can run at one fourth
the normal vector speed. Even on the Cray Y-MP and Cray C-90 com-
puters there is a significant degradation in the vector speed from indirect -
vectorization. The speed of indirect vectorization is lower because random
access of memory tends to be slowed by memory bank conflicts. Yet, in
most cases, it is still faster than scalar coding.

During the next phase, the particle push, the orbits are all mdependent
and thus trivially vectorized and parallelized.

The third phase, the deposition interpolation, requires a more comph-
cated cumulative interpolation phase and requires both a gather and a
scatter operation to perform the deposition of charge and current density
contributions from the various particles. There is a possible recursion in
this step because different particles may try to increment the same mesh
location simultaneously; consequently this aspect prevented vectorization
and multitasking. This is the problem of the many-to-one mapping. One
remedy to this problem, devised by Horowitz for the QN3D code[9], was to
break the deposition phase into several sub-phases each of which accumu-
lated the densities from a corresponding subgroup of particles. By choosing



each subgroup such that no two particles occupied the same mesh cell it
then became impossible for conflicts to occur. QN3D used both vectoriza-
tion and parallelization within each sub-phase to optimize the deposztzon
interpolation.

2.2 Vectorization Avoiding Gather-Scatter

Other workers have also been developing schemes to improve the efficiency of.
particle codes on vector-serial computers. For example, Heron and Adam|[10]
developed a deposition algorithm which is organized such that most of the
loops employ direct vectorization, thereby reducing much of the overhead
of the alternative gather-scatter formulation.

2.3 Enhancing the Memory Access

In our experience, the least efficient type of memory access is the fetching
(or storing) of single words from (or to) random memory locations. And
the most efficient form of memory access moves continguous or constant
stride arrays (or vectors.) Of particular importance to our project is the
fact that the time to access short vectors, say from 4 to 12 words in length, is
only marginally greater than that for accessing one word. This suggests the
notion, borne out by tests, that random accessing of memory can be made
significantly more efficient if we can move vectors of information instead of
single words.

Since the field mterpalatzon and the deposztzon interpolation both ac-
cess several quantities in each “random” grid location, we are encouraged
to use interleaving of the field and density arrays. Thus in the field in-
terpolation we access the 12 quantities: E.(7,7,k), Ey(,7,k), E.(,7,k),
Bu(i 3, ), By(isd, ), Buli i )y Bo(i1,, k), By(i 1,3, ), Bo(i+ L, ),
B:(i+1,3,k), By(t +1,4,k), B.(: + 1,7,k) as a vector of length 12 which
is stored with unit stride because the arrays are interleaved. This is ac-
complished in Fortran by including a leading index which describes which
6-vector component to use from the 6-vector E,B. Thus the Fortran variable
EX is dimensioned EX(6,IM,JM KM) where IM, JM, and KM are the grid
dimensions. This means that E,(, 7, k) = EX(2,I,J K) and that B,(z,7,k) =
EX(4,1,J,K), for example. A_ similar interleaving of the charge and cur-
rent density arrays is also done in which the four quantities at each grid
point form a 4-vector or when taking two adjacent grid points in z form
an 8-vector. Interleaving the storage of the field arrays was first done by
Langdon and Lasinski[4] in the mid 1970’s to take advantage of the memory
characteristics of the CDC-7600 large core memory. Though contemporary
supercomputers differ markedly in their memory architecture, compared to
the CDC-7600, they also have better memory performance when several
contiguous (or constant stride) words of data are accessed together. As we
shall describe in some detail later, it is the practice of interleaving together
with a scheme for reducing the number of memory accesses that will result



in a particle simulation technique much more efficient in its memory use
than was previously the case.

Interleaving the field arrays, and also the density arrays, not only helps
the efficiency of the memory access, but it lends itself to the efficiency of
the code by allowing direct vectorization in many of the loops. '

The order of computation plays a big role in the amount of memory
access that is needed. Traditionally, particle codes process the particles in
the order that they occur in the particle tables. Since the spatial particle
location and therefore the nearby grid quantities are relatively random, the
various grid qunatities must be accessed every time we process another
particle. If we could process all the particles within a grid cell in sequence,
we would only need to reference the nearby grid quantities once for each
grid cell. This means that in a code that has an average of ten particles per
grid cell that the referencing of the memory could be an order of magnitude
faster if the particles were grouped by grid cell. It is this reduction of
memory “traffic” that was the primary motivation to develop a code that
uses and maintains spatially-ordered particles.

2.4 Parallelizing the Deposition

There is also a serious problem when we consider how a particle code could
be parallelized. The field interpolation, the push, and the solve are relatively
easy to parallelize because there is no data conflict. Unfortunately, there is
a conflict in the deposition interpolation that must be resolved inorder to °
parallelize that phase of the calculation. The problem is that two different
processors may try to update the same grid point at the same time. Until
recently this many-to-one map problem also prevented vectorization. How-
ever, a new compiler for the C-90 now generates serial code that allows the
computer to detect and correct any “collisions” at run time.

One approach to this problem claims that the errors generated by forcmg
the deposition interpolation to parallelize are relatively small and therefore
acceptable. Such an “asynchronous” version would generate irreproducible
results which is less than satisfactory even if the errors are small. We
mention this possibility only because others have actually proposed it!

2.5 Parallel Sortingrand Merging

We noted above that Horowitz [8,9] employed a special particle sorting
scheme to allow parallel deposition interpolation within a sub-group of par-
ticles which the sorter selects such that no two members of the sub-group
occupy the same cell. This technique removed the many-to-one mapping
defect to allow concurrent deposition.

As suggested above, we want our particles ordered spatially and some
kind of sorting and reordering of particle quantities will be required to main-
tain their order as the particles are moved in the simulation. And although
it was eflicient use of the memory that first lead us to sorting, it was the



realization that ordered particles would allow both domain decomposition
and better vectorization that really convinced us to explore this avenue.
Domain decomposition, as a well known paradigm for parallelizing algo-
rithms, suggested how we could design our code to operate well in a parallel
environment. Since these approaches were also suggested by our efforts to
optimize our serial codes, we think that this avenue can lead to a “win-win”

situation in which the most' efficient serial code scales linearly to a most

_efficient parallel code. Of course, this whole argument fails if the sorting
and reordering takes too much time.

Spatially ordered particles can be partitioned into local compact sub-
groups including all the particles within a given sub-domain. In such an
arrangement, the deposition interpolation can be done concurrently by all
the sub-domains because the many-to-one maps are all removed. And it is
clear that the field interpolation and push are trivially parallelized in such
an arrangement since there never was a mapping problem in the first place.
Later we will show how the field solve also parallelizes nicely under this
paradigm. «

- Moreover, within a sub-domain, the innermost loop of the deposition
interpolation can be vectorized in direct vector mode. Likewise, the field
interpolation and the push can-have all the loops over the particles within
a sub-domain processed in direct vector mode. This all leads us to believe
that we can build a code that is both parallelized and vectorized which is
likely to be optimal on a vector-parallel computer such as the Cray C-90.

Our approach to sorting the particles is based on the fact that only a
relatively small fraction of the particles leave their former grid cells during
any one push phase. We partition all moved particles into fransit particles
and retained particles according to whether they crossed into new grid cells
or not.

- We shall focus on the serial a.lgonthm first and note its genera.hza.tlon
to parallel computing later. Our sorting and rebuilding method is really a
combination of a fast nlogn sort on the n transit particles followed by a
merge with the retained particles. The economy of our method is based on
the fact that n is much smaller than the total number of particles N. Since
the merge operation requires a number of operations proportional to N and
since the work involved in the fast nlogn sort is relatively small (in most
‘cases) the resulting sort of the entire particle table requires work of order
N operations. We believe that the cost of sorting would be prohibitive if
we simply applied a standard sorting method to the entire particle table; it
is the two step process of sorting the transit particles followed by the merge
that gives us a combined method that is fast enough to be affordable.

An obvious problem with this method is the requirement that two par-
ticle tables must be maintained in memory. And, in fact, such a severe
storage requirement would almost cause us to abandon this method except

for the following consideration: There are other phases of the calculation
that require large areas of scratch memory of roughly the same size as the

particle table. As it will be shown later, we can effectively store these ar-



eas of scratch memory on top of whichever particle table is unused at any
. particular moment.

3 Veétor-Serial HOPS Versions OSOP and RSOP

In this section we describe in more detail the algorithms and coding em-
ployed in the vector-serial version of HOPS. For all the details, the reader
is referred to the source listing accompanying this paper or a.va.lla.ble from
the program library.

3.1 Ordered Storage with Ordered Processing

The basic methodology used in HOPS, as previously stated, relies on the
ordered storage of the particle information. We wish to distinguish this
basic method by the acronym OSOP (Ordered Storage Ordered Processing)
from a related method RSOP (Random Storage Ordered Processing), to be
described later.

HOPS carries the particle variables 2p, jp, and kp in the particle tables;
‘these indices specify the coordinates of the grid cell containing the particle.
It is convenient to also carry the offset index

{(n) = ip(n) +im * (jp(n) — 1) +im * jm * (kp(n) — 1) (1)

where 7m and jm are the grid dimensions in the z and y coordinates. The
quantities ip, 7p, kp and [ are computed as the last part of the push phase.

38.1.1 Sorting and Reordering

The key methodologies to the success of the HOPS code are those of sorting,
reordering, and rebuilding the particle tables. The cell index of particle =,
I(n), is the reference by which we define the spatial order of the particles.
HOPS is designed to maintain l(n) as a monotone non-decreasing sequence.
After each push this ordering is broken; it is the job of the Subroutme
Sormerge to put the particles back into order.

To prepare for the sorting and rebuilding, the last stage of the push
subroutine scans the particle tables to find all particles that have crossed
cell boundaries in the push. We do this by keeping the old value of [ as
lo1a so we can test (I —l,4) to immeadiately determine which particles have
been pushed out of their former cells (transit particles) and which ones
have been retained in them. At this stage the transit particles are tested
to see if they are escaping from the domain and then depending upon the
boundary model imposed, they are either removed (lost) from the particle
table or they are repositioned according to periodic or reflective boundary
conditions. A two column transit table is constructed in which the first item
gives ictp(nt), the cell index of transit particle nt. In the second column is
iptn(nt) = n which is the pointer from transit particle nt to its position n



in the original particle table. As the particle table is scanned for the transit
particles, we also indentify contiguous groups of retained particles by setting
pointers to the bottom and top indices n of the retained groups. To do this
we have another two column table with isgbeg(nr) and isgfin(nr) which
give respectively the beginning and final index n of the nrth retained group;
we call this the retained table. As we shall explain later, the preparatory
work of determining the transit particles is done as part of the push beca.use
this is most expedient for parallel computing.

The routine Sormerge then proceeds to sort and rebuild the pa.rtlcle table
as follows:

Since the retained partlcles did not change thelr cell indices, they re-
main properly ordered. The transit particles, on the other hand, are gener-
ally disordered. We apply the radix sorting method which is implemented
-in the CRI routine ORDERS? to find the permutation nti(nt) such that
ictp(nti(nt)) is a monotone sequence in nt.

HOPS employs pointered arrays which enables dynamic management of
the memory. We have allocated two blocks of memory for the storage of the
particle tables. Rebuilding the particle table is done by moving (or reading)
the data from the old “block” to the new one, as follows: Proceeding, a cell
at a time, we start through thé ordered transit table and move the transit
particles’ attributes from the old table followed by the retained particles.
The result is a new particle table for which I(n) is monotone. The present
version of HOPS carries 17 attributes per particle. So when we read the
data of a transit particle from the old block to the new one, it is a vector
transfer of 17 words. And when we read the data of a contiguous group of
retained particles we move 17 * (isgfin(nr) — isgbeg(nr) + 1) words of data
in a vector transfer.

In a last pass over the particles we verify their correct ordering and we
determine the pointer nfpcl(iocl) which specifies the first particle in each
occupied cell. Tests of this routine show that nearly all the work is spent in
rebuilding the table. We have found it essential to move the retained par-
ticles in groups rather than individually because it approximately doubles
the speed of this routine, Sormerge.

To recapitulate, as the last phase of the push we:

1. Construct a transit table of particles departing cells

2. Construct transit pointers to old particle table

3. Construct retained pointers to old particle table
Then Sormerge performs the following tasks:

1. Sorts the transit table ordering particles by cells

2. Allocates a new particle table |

3. Processes the grid cells in ascending order and for each cell: |



e Moves the particle data of transit particles to new table

e Moves the particle data of retained particles to new table

38.1.2 Ordered Field Interpolation and Push

In HOPS we combine these first two phases so that as soon as we determine
the fields on the particles within a grid cell, we advance their velocities
and positions. In order to properly time center the deposition phase of the:
previous time step, the particles were only advanced through half a time
step before the deposition. Thus, before advancing the velocities in the new
time step, the particle positions. must be advanced through the second half
of the time step as follows:

X" = x"12 ;. 5yl : (2)

Since this formula does not depend on any grid quantities, it leads to code
which is trivially vectorized. Before proceeding to the velocity advance and
the subsequent push, we must recompute the transit quantities and then
reorder the particles by invoking the routine Sormerge, just described in
Section 3.2. We must do this because the halfstep of pushing can disorder
the particles. Once, we have insured that we have ordered particles we pro-
ceed to advance the velocities. To do this we must determine the Lorentz
accelerations (forces) on each particle; these are obtained by interpolation
from the electric and magnetic fields on the grid. The determination of these
forces and the subsequent push are accomplished in the routine Pushtran.
Since the particles in each cell have been grouped together contiguously in
the particle tables, we can proceed to process them cell by cell. Pushtran
loops over all occupied grid cells. For each cell it obtains the force field com-
ponents from the neighboring nearest eight vertices by four vector accesses
of the interleaved fields. Each vector is of length twelve and holds the two
6-vectors of field values corresponding to two adjacent grid points-in the z
direction.

Within each cell we then loop over the contained particles and use the -
trilinear interpolation formula to establish the electromagnetic field compo-
nents at each particle. The accelerations are determined and the velocﬂ:les
are advanced:

v'n.+1/2 — V'n.—1/2 + andt ' v (3) .

Since a™ itself depends on v™t*/2 (via the Lorentz force) this leads to an
implicit equation in v**1/2, we apply the well known Boris push[11] which
correctly advances the implicit form of Eq. 3 in a time and space centered
manner.

In the second to last stage of Pushtran, we also perform the first half of
the spatial advance. This is done in the same loop as the velocity update.
It takes the form:



n.+1/2 =x" 4 5vn+1/2dt (4)

Once this spatial advance is finished we must reorder the particle table.
As described above, the last stage of Pushtran finds the transit particles
- and generates pointers relating them and the retained particle groups to

the particle table. Then Sormerge is called again to sort and reorder the
particles. :

8.1.3 Ordered Deposition Interpolation

In the deposition interpolation a portion of each particle’s charge and current
contribution is assigned and accumulated at the neighboring grid points.

To get started we need to compute the grid locations just below the
particle position; they are: '

Z,, Lower grid point position in
n Lower grid point position in y
Zn Lower grid point position in z

* and from these we can constru¢t the various interpolation weights. Then,
for example, : '

W(n,p,1) = Cp(Zn + dz — zpn)(Jn + dy — ypa)(Zn + dz — 2p,)  (5)

gives the weight for the first vertex (Z,,¥n, 2.) for the pth physical compo-
nent as contributed by the nth particle. The last index of W(n,p,v) is v
which indicates which of the eight vertices is getting the deposit. The nor-
malization coefficients C, contain the charge and current factors together
~ with appropriate geometric factors. Cj gives the charge while C,, Ca, C,
give the z,y,z-components of the current contributions. Altogether, then,
we compute 32 weights W(n, p,v) for each n. The physical units of these
weights are the actual charge density and current density contributions to
be accumulated at the various grid points. These quantities are computed
in direct vector mode in loops for which = is the loop index. .

Instead of doing the deposition directly into the grid arrays for charge and
current density, we alternatively use the eight partial grid arrays Q(p, v, I(1,n))
for v = 1,8. Since the leading index is the indicator of which physical
quantity is being considered, the charge and current arrays are interleaved.
Inorder to vectorize this accumulation we have an outer loop on the index v
and an inner loop on p. We use p = 1,8 on the inner loop while v skips by
two’s through the outer loop; this means we combine the four contributions
to two adjacent grid points into a vector loop length of eight. In Fortran
the loop is:

do 40 iocl = 1, ioclmax
1fix = 1(1,nfpcl(iocl))



do 40 n = nfpcl(iocl), nfpcl(iocl+l)-1
cdir$ ivdep :
do 40 id = 1, 8

Q(id,1,1fix+ioff(1)) = wt(n,id,1) + Q(id,1,1fix+ioff(1))
Q(id,3,1fix+ioff(3)) = wt(n,id,3) + Q(id,3,1fix+ioff(3))
Q(id,5,1fix+ioff(5)) = wt(n,id,5) + Q(id,5,1fix+ioff(5))
Q(id,7,1fix+ioff(7)) =

wt(n,id,7) + Q(id,7,1fix+ioff (7))
40 continue :

In coding this loop we had a choice of doing a gather-scatter (indirect)
vectorization over the index 7 or in doing a directly indexed vector loop over
id. Although the loop on n can be constructed to have a long vector length,
we find it more efficient to do direct vectorization on the short vector. The
index I fiz gives the cell address that is common for all particles referenced
inside the last two loops; its use allows many fewer references to the memory
locations of the array Q. The quantities zof f(v) in the third index give the
offsets that relate the grid index of a given vertex to the first vertex of any
given cell. This loop is presented here in detail because it is the most time
consuming loop in the entiré¢ HOPS code. The compiler directive cdir$
ivdep forces the CFT77 compiler on the C-90 to vectorize this loop.

Once all the @ values are determined, we simply add them to generate
the charge and current densities on the grid. Thus for each grid point 1, j, &
we compute:

8
d(i,3,k) =d(i,7,k) + Z Q1,v,1g9) (6) .
. v=1
where ig(%, j, k) is the expanded offset grid index. The three components
of the current density cz, cy, and cz are determined in an analogous fashion.

3.2 Random Storage with Ordered Processing

The foregoing description of the OSOP version of HOPS as given in subsec-
tions 3.1, 3.2, 3.3, and 3.4 is closely related to the RSOP version which we
~ now describe. We still use the concept of ordered particles and the ordering
is precisely that of the OSOP version. The index n is still the ordered index
(spatially), but it is not the index of the particle table. Instead, we use n/(n)
to give the particle table index for the ordered nth particle. As a result 1
is replaced with '

I(n'(n)) = ip(n'(n)) + im * (Jp(n'(n)) —1) +im * jm * (kp(n'(n)) — 1) (7)

The designation of RSOP (random storage ordered processing) relates di-
rectly to this form. The permutation mapping n’(n) gives the storage loca-
tions of the ordered index n. Thus I(n') is no longer a monotone sequence in
n'; rather I(n'(n)) is monotone non-decreasing with respect to the ordered
index n.



8.2.1 Sorting and Reordering

The RSOP analogue of the routine Sormerge is Psormerge. The “P” prefix
indicates “P”ermutation mapping. Psormerge is a very similar routine to
Sormerge. Instead of rebuilding the particle table, we rebuild the permu-
tation table. The permutation table has, of course, only one attribute per
particle while in comparison the particle table in use in the OSOP version of
HOPS has 17 attributes per particle. In contrast to the steps of the routine
Sormerge, given above, we have the following steps in Psormerge:

v

1. Construct a transit table of particles departing cells
2. Construct transit pointers to old permutation table

3. Construct retained pointers to old permutation table

Then Psormerge performs the following tasks:
1. Sorts the transif table ordering particles by cells
~ 2. Allocates a new permutation table
3. Processes the grid cells in ascending order and for each cell:

e Moves the permutation entries of transit particles to new

table

e Moves the permutation entries of retained partlcles to new
table

Psormerge employs a significant number of indirectly indexed loops while
Sormerge has mostly directly indexed loops which favors Sormerge with
respect to the arithmetic speed. Psormerge, on the other hand, moves
1/17th as much data which one might think could be moved 17 times faster
than in Sormerge. However, in Sormerge the data is moved as vectors of
minimum length 17 in comparison to Psormerge where the vectors are of
minimum length 1. In moving the data of a group of contiguous “retained”
particles, say of length nrg, the longest vectors will be of length 17nrg in
Sormerge, but only of length nrg in Psormerge. The vector efficiency of the
longer vectors is so high that the move in Psormerge is only a few percent
faster than that of Sormerge. Most of our testing has shown that Sormerge
is generally about 20% faster than Psormerge.

-8.2.2 Ordered Field Interpolation and Push

The ordered field interpolation and push_proceeds as in the OSOP version
with the important change that the index = is now replaced with the indirect
index n/(n). The particles are spatially ordered with respect to n but stored
with respect to n'(n). This means that each directly vectorized loop in
the OSOP field interpolation and push is now replaced with an indirectly



vectorized loop. Thus the less efficient mechanisms of gather-scatter are
used instead of those of direct vectorization. .

From the point of view of efficient memory usage, both OSOP and RSOP
make the same number of memory references but the former makes constant
stride direct references while the latter makes random indirect references.
The RSOP access not only requires the computation of the indirect index, -
but also is prone to memory bank conflicts. Althought there is some vari-
ability in the relative performance of the OSOP and RSOP push the OSOP
tends to be about 10% faster on the Cray C-90 over a wide range of tests.

8.2.3 Ordered Deposition Interpolation

The deposition interpolation of the RSOP version proceeds very much like
the OSOP version but it uses the indirect index n/(n) instead of n.
Now the expression determining the weight factors is:

W (1,5,1) = Gy(Gn-+ d — 5, (1)) G-+ dy — 97, (m)) G-+ d2 — 27} () (8)

gives the weight for the first vertex (Z,,,¥n, Z») for the pth physical compo-
nent as contributed by the nth’ ordered particle thch is pa.rtlcle n’(n) in
the particle table. :

The main accumulation loop in the deposition, shown as Loop 40 above,
remains the same as in the OSOP version. It has a direct vector structure
even here in the RSOP version. This suggests that the RSOP deposition

will perform comparably to the OSOP version. The RSOP deposition will
be somewhat slower since the loops computing the weights W (n,p,v) are

now indrectly vectorized. But since the deposition loop dominates, the
difference between RSOP deposition and that of OSOP will be minor. In
typical test runs we have found the OSOP version about 3% faster, more
or less confirming our estimates. '

4 Vector-Parallel HOPS

Both versions of HOPS employ the same domain decomposition paradigm
for deriving the parallel generalization of the basic HOPS algorithms de-
scribed above. The computational domain is logically rectangular and three
dimensional. Our domain decomposition uses rectangular subdomains con-
structed from the independent partitioning of the three coordinate axes.
Most of the examples to be given use a domain constructed from four par-
titions in each coordinate which results in a set of 64 subdomains. HOPS
parallelizes over these many subdomains.

In both versions the grid cells are ordered by a scheme we refer to as
supra-natural ordering which means that the cells employ a natural ordering
within each sub-domain while the global ordering among the sub-domains
also has an ordering that is natural with respect to indices labelling the



subdomains. The important aspect of the grid cell ordering is that the cells
within each subdomain form a contiguous subset of the total set .of cells.

For the OSOP version, the particle table is also partitioned into contigu-
ous subsets by virtue of the spatial ordering of the particles. In the. RSOP
version the particle table is not partitioned contiguously, but the permuta-
tion table (or pointer table) relating the ordered index to the serial index
is partitioned contiguously.

In both versions, the grid data is contingously partitioned among the
subdomains, but the possibility of conflicts at the interfaces between the
subdomains requires some care. '

4.1 Parallel Pushing

The pushing phase of the parallelized versions of HOPS is a very simple
generalization of the serial version. It is only the properties of the particles
that are modified together with the generation of the transit particles and
their associated pointers. All these quantities are disjoint and there is no
communication or information passed from the pushing phase of the other
subdomains.

An outer loop is introduced which ranges over the particle subsets asso-
ciated with each subdomain. The pointers imsdbeg(isb) and imsdend(isb)
give the ordered particle 1ndex of the first and last particles in the zsbth
subdomain.

As in the sena.l'versmns, the last phases of the push construct transit
particle quantities including pointers that give the particle table locations
of each of them. While in the serial version, all the transit particles either
reentered other cells or were lost -at the boundaries, here there is a further
possibility that some of the transit particles may enter other subdomains.
To account for this we now introduce the class of emigrant particles which
are identified and recorded just like the transit particles. The independence
of each subdomain in the push prevents us from introducing the emigrants
into their new subdomains during this phase. One of the emigrant quanti-
ties, the cell address of origin, is placed in a special two-dimensional array
in which the row designates the the sub-domain and “serial” index of de-
parture while the column designates the destination subdomain. Since each
emigrant particle has only one destination, this table is largely filled with
zeros, since each row can have only one entry. This rather sparse table-

- or augmented table- will be required for parallel operation in the yet to be
described immigration process.

4.2 * Parallel Sorting and Reordering

Once the augmented table of emigrant cell addresses is completed, it is pos-
“sible to synchronize and perform all the sorting and reordering in parallel.
Since we need only read (and not store into) this table, it is clear that no
parallel conflicts are possible. And as each column contains the immigrant



quantities of a given desitination sub-domain, it is easy to scan down the
columns, in parallel, to determine the inverse mappings (or pointers) which
in turn allow us to “read” the immigrant quantities. We subsequently use
them to extend the local subdomain transit tables. At this point each sub-
domain has a complete list of the particles now residing in 1ts partition,
comprised of retained groups and the transit particles.

The remainder of the parallel sort and reorder proceeds independently
within the subdomains and consequently all of this work is performed in-
parallel. The actual algorithm is the same as in the serial version, only here
it i1s applied to a subdomain.

4.3 Parallel Deposition

The parallel deposition relies on the spatial decomposition of domain. Grid
points that lie on the interfaces between subdomains will get contributions
to the grid quantities such as charge density from the adjoining subdomains;
this means that attempts to update the grid quantities in parallel could
result in conflicts. This is, of course, the many-to-one mapping problem we
already encountered.

We handle this problem by exploiting the partial arrays wfnew which we
already use in the serial versions. These arrays, it will be remembered, con-
tain the eight fractional contnbutlons of each particle to its elght enclosing
grid cell vertices.

Since there are four physical quantities to be deposited and since there are
eight nearby vertices to receive the contributions of each particle, the array
wfnew should be dimensioned 92 nmaz. Conflicts cannot occur because
the particle subsets contributing to anyone of these 32 arrays are disjoint.
Ideally, one could build up the @ arrays totally in parallel and then once -
they are formed, synchronize and then sum the @’s in vector-parallel mode.

Unfortunately, storage limitations require that wfnew be smaller; it would
be the largest array in the code otherwise and.would be too large to store
in the unused particle table. So we have limited its size to 8 nmaz which
means we need to build up the @’s in four phases; each of the four phases
proceeds in parallel and then a synchronization is needed to go on to the next
phase. Each phase completes the contributions to two of the nearby vertices.
The innermost loop in generating the @’s ranges over four quantities in
direct vector mode. Although it is possible to re-arrange the loops such
that the innerinost loop admits indirect vectorization on a long vector, our
measurments show that keeping the short direct vector loop innermost is
fastest. The last phase of the deposition, the fifth, then sums the s to

obtain the charge and current densities, again in vector-parallel mode.



5 The Vector-Parallel Field Solver

5.1 Pre-Maxwell Field Approximation

In this section we will give an overview of the system of equations solved
by the HOPS code. In this hybrid code we use the particle-in-cell method,
as given above, for the ions, and a zero temperature fluid model for the
electrons. In effect, the electron momentum equation along with Maxwell’s
equations determine the electromagnetic fields. The model chosen for the
electrons and the fields is motivated by the dominant physical effects in
recent problems of interest. We could equally well do a full electromagnetic
and relativistic treatment were that wanted. Our ability to parallelize the
field solver would not be affected much by the choice of the model chosen
for the electrons and fields.

The following set of equations will be the starting point of the discussion
of the various approximations used in the equations solved by HOPS.

vma:%”.n%% O (9)
vé@:-%%—? (10)
me%‘i — e (E+ Ve:B) (11)
mq ‘fi‘;i = Zie <E+ vi >C< B) (12)

Equations 9, 10, and 11 will be used to determine the electromagnetic
fields. Equation 12 determines the dynamics of the ion macroparticles.
The usual particle-in-cell method described above is used to advance the
ion quantities. The electromagnetic field calculation is somewhat different
from that used by Horowitz in QN3D.[8] It differs in that we include some
finite electron mass effects, and secondly the numerical method used to solve
the field equation is new. l

There are two basic assumptions used in the derivation of the equations
used here. They are; (1) Quasineutrality, and (2) the Darwin model (neglect
of the transverse (solenoidal) part of the displacement current in Ampere’s
law). The motivation in using these assumptions is to eliminate fast time
scale physics in both electrostatic plasma oscillations as well as purely elec-
tromagnetic modes.

‘Combining these assumptions is consistent with neglecting the entire
displacement current in Ampere’s equation. Thus this equation becomes

VxB:éEJ. (13)
C



Neglecting the longitudinal (irrotational) part of the displacment current
eliminates the electron plasma oscillation, because the longitudinal part of
~ Je is forced to be equal to the longitudinal part of J; which can only respond
on the ion time scale. Thus the combination of quasineutrality together
with the Darwin model leads to set set of equations which we refer to as
- pre-Maxwell, neglecting all displacement currents.

Some of the electron inertia effects can be included without too much
difficulty. First an equation for E is obtained by deriving the moment
equation for the time rate of change of the electron current. To do this we
take the first moment of the Vlasov equation, which implicitly contains Eq.
11,

d.'le_u.f‘:c e '
dt  4nm mecJeXB' ' (14)

Some terms have been neglected in this equation. They are terms that
depend on J2, electron pressure gradient, and electron drag. Using the
definition of the total current

J=J;+J. ‘ (15)

and Ampere’s law in the Da,rvx;ig limit, (Eq. 13) Eq. 14 can be re-written
in terms of the time rate of change of the ion current,

d 2
(GVXB-J) pep 5 .B. (16)
dt 47 MeC

The first term on the left hand side can be changed by commuting the
time derivative of the curl of B into the curl of a time derivative of B. This
term then becomes a curl curl E term via Eq. 10.

An equation for the time derivative of the ion current can be obtamed
from the ion equation of motion Eq. 12

dJ; =L'£2E+ Ze

dt 47

As in the derivation of the electron current equation, Eq. 16, terms that
depend on J?, ion pressure gradient, and ion drag have been neglected
Thus Eq. 16 becomes

2 2, 1
Vx(VXEWH{ =2 4 2 i) g 2T (—— + i)
c? A \m. my

(17)

=0.

| (18)

This equation is evaluated at a time level between the n and n + 1 level.
The electric and magnetic field at this ~ time level are given by, -

E=aE" + (1-a)E" : (19)

B =aB"! + (1 - a)B", | (20)



where the ~ indicates a “mix” of the n + 1 and n time level determined by
the parameter a. B terms that appear in this equatlon are replaced by E
terms by using Eq. 13,

B'n.+1 _ Bn.
At
Using equations 19, 20 and 21 we obtain,

=—cVxE. (21)

B=B"—acAtV x E. (22)

Combining these equations the equation for E becomes,

Vx(VXE)+ AB+(VxE)xI+GV X (VxE)xB"=Q (23)

-where,
denitie2 1z 1
A= TS (o) (24)
,.xg _ aeAt (25)
mecC
- acAt{4”e (5 + i) § L B"} | (26)
c \m; m,. : mec?

Q=—ﬂ'(£+ 1>J?+§xBﬂ+
' . \m; m,

(@7)

5.2 Discrete System of Field Equations

We have used the Mathematica program to simplify the conversion of this
equation into Fortran This is done by writing out a Taylor series expansion

of E, B™ and J . Using the Mathematica programs to do the curls and
cross products we can represent Eq. 23 in terms of grid point quantities. In
our case this involves 27 grid point quantities for each of the three vector
components of this equation. The Mathematica program then extracts the
coefficients which multiply the three components of E; ;. Thus the equation
is given in matrix form as,

M- E;jx = R(Bit1 g1 h21) - (28)

_ The matrix M is three by three multiplying the three components of
E; jr. All of the other 26 grid point quantities for each component are on
the right hand side of Eq. 28. This equation can be inverted to give

Eril =M™ - R(ED 11 k1) - (29)



This is the main equation used in the field solve iteration scheme. In each
iteration of this equation the E on the right hand side is given. The iteration
continues until some convergence criterion is met. When convergence is
obtained, E™#! is obtained from E using equation 19, and then the new B
is determmed by, :

Bn+1 =B" — cgt YV % (En+1 + En) '. | (30)

In all of the simulations presented in this paper we use time ‘centermg, :
that is & = 3. This is the “best” value since the ion current and density
used in Eq. 23 are determined at this time level.

5.3 Vector-Parallel Algorithm for Field Equations

To solve the pre-Maxwell field equations we simply iterate 29. From the
form of its right hand side, it is clear that there is coupling at subdomain
boundaries to grid points in adjacent sub-domains. Inorder to ensure that
these values are up to date, we must put a synchronization barrier at the
end of each iteration. That is, as soon as all the E™ are computed from
the previous iteration level, we can begin to evaluate 29 in parallel over the
several subdomains.

At the domain boundaries, 29 clearly requires guard cells extending one
grid point beyond the phys1ca.1 domain boundaries. At each iteration the
appropriate boundary conditions are used to determine the E values at these
guard points.

Since we are working on a three-dimensional domain, 29 was originally
evaluated in a triply nested do-loop. The compiler on the Cray C-90 gener-
ates code that runs the inner loop in vector mode and the outermost loop in
parallel mode. Since the number of grid points in any one direction can be
relatively small it is possible to have load balancing problems. For example,
in many of our tests we have 32 grid cells in each coordinate. This leads to
33 grid points in each coordinate. The compiler generates 33 processes to
be run on the 16 processors; this has a theoretical maximum overlap of 11.

- To overcome this kind of problem we could require that the number of grid
points in the x-coordinate be a multiple of 16, or we could try to parallelize
over the combined two outermost loops. The C-90 compiler is unable to par-
allelize over these combined loops. We have replaced the outer two loops
with a single loop over a new index which has pointers to the index pairs
representing the two-dimensional subspace of the oringinal outermost loops.
This structure parallelizes with the C-90 autotasking compiler. In the ex-
ample given, we now have 332 processes on 16 processors with a theoretical
overlap of 15.78, which we consider acceptable.



6 Test Problems

Our test problems fall into two categories. The first group, relevant to the
development of the HOPS code, are used to show the relative performance
of HOPS against more typical PIC codes and also to compare the OSOP
version relative to the RSOP version. In these performance tests we use the
parallel versions of OSOP and RSOP but run them in a single processor to
get a good comparison with the PIC code which can only run on a single
processor. The second group of test problems were run on all 16 processors
in parallel mode to make an assessment of HOPS parallel capabilities and
its scalability; in this group we compare OSOP versus RSOP.

6.1 Single Processor Performance Tests

The first pair of test problems is used to make comparisons between three
code versions. A special PIC version was generated by taking the RSOP.
version and removing all of the code required for the sorting, reordering,
and other procedures specific to ordered processing; we sometimes refer
to this as the denatured version of HOPS. The first problem simulates the
expansion of a plasma from a very small sphere centered in the middle of the
domain; the second problem simulates a thermal constant density plasma.
In the first one most of the grid cells are empty while in the second one
nearly all the cells have particles in them. In the first problem the vectors
are quite long as there are many particles in the grid cells that are occupied;

the the second problem the vectors are relatively short because nearly every
cell has some particles in it. In the following table we show the timings in

terms of microseconds per particle per time step for the first (point source)

problem:
HOPS C-90 Performance Unitasking psec
Point Source Problem (320k particles)
OSOP RSOP OSOP PIC
Procedure || Parallel Version | Parallel Version | Parallel Version | Traditional Code
(64 Subdomains) | (64 Subdomains) | (1 Subdomain) | (1 Subdomain)
Push .38 A1 .38 1.9
Sorder 1.0 14 .85 1.41
Deposition 44 .50 44 .49
Total* 1.9 2.3 1.7 3.8

* Excludes field solve timings.
~ Here the parallel OSOP version of HOPS is 26% faster than either the
traditional PIC code or the parallel RSOP version. ! Boundary particle
treatment timing for the PIC version. In the HOPS versions the boundary
treatment is part of the Sorder routine.

Now in the second problem, where we represent a uniform thermal plasma,




the particles are equally divided among the subdomains. In the first simula-
tion we have 400k particles implying a vector length of about 12 for critical
loops. In the following table it is the relatively slower performance in the
push phase that keeps HOPS from running faster than the PIC code.

HOPS C-90 Performance Unitasking psec
Thermal Plasma Bath (400k particles)
OSOP OSOoP PIC
Procedure || Parallel Version | Parallel Version | Traditional Code
|| (64-Subdomains) | (1 Subdomain) | (1 Subdomain)

Push 1.6 . 1.6 1.1
Sorder 2.2 : 1.5 - 1.71
Deposition 2.2 2.2 2.3
Total* 5.9 5.3 5.0

* Excludes field solve timings.
1 Bounda.ry particle treatment timing for the PIC version. In the HOPS
versions the boundary treatment is part of the Sorder routine.

If we re-do the second problem with 1000k particles, with about 33 ele-
ments in the critical vectors, then the superior vector performance in HOPS
allows it to run faster than the PIC version as is evident in the next table.

HOPS C-90 Performance Unitasking psec
Thermal Plasma Bath (1000k particles)

OSOP OSOP PIC
Procedure || Parallel Version | Parallel Version | Traditional Code
" || (64 Subdomains) | (1 Subdomain) | (1 Subdomain)

Push .75 .76 1.3
Sorder 1.4 1.1 1.7
Deposition 1.1 - 1.1 1.2

Total* 3.2 3.0 4.1

* Excludes field solve timings.
! Boundary particle treatment timing for the PIC version. In the HOPS
versions the boundary treatment is part of the Sorder routine.

Of particular curiosity, in the three preceding tables, is the time taken to
treat the boundary particles in the PIC code. It is rather surprising that it
takes a comparable amount of time to the entire sort and rebuilding process
in the HOPS versions. This is partially explained by noting that in HOPS
only the transit particles need to be tested and treated, while in comparison
the standard PIC codce requires the testing of every particle to see if it is
a boundary particle.



6.2 Parallel Execution Tests

Both versions of HOPS have been run in parallel on 16 processors on the
Cray C-90. The runs we did above, simulating the thermal plasma, were
done again with first 400k particles and then 1000k particles. The processor

times are shown in the next two tables:

HOPS C-90 Parallel Performance psec
Thermal Plasma Bath (400k particles)
OSOP RSOP
Procedure || Parallel Version | Parallel Version
(64 Subdomains) | (64 Subdomains)
Push 2.0 2.7 ‘
Sorder 1.9 2.3
“ Deposition 2.8 2.7
Total* 6.7 7.7

HOPS C-90 Parallel Performance psec
Thermal Plasma Bath (1000k particles)
OSOP RSOP
Procedure || Parallel Version | Parallel Version
(64 Subdomains) | (64 Subdomains)
Push 1.1 1.8
Sorder 1.1 1.4
Deposition 1.5 1.5
Total* 3.7 4.7

Although the OSOP version has always been superior to the RSOP ver-
sion on the Cray multiprocessor vector machines, we do not know if this
will remain true on various massively parallel computers. -

7 Conclusions

We have developed a new particle simulation code, HOPS, which has been
tested on the Cray C-90. HOPS does not change the basic particle push-
ing algorithms but changes the way the “bookkeeping” is done. HOPS has
been designed to remedy the well known inefficiencies of traditional par-
ticle codes, particularly the excessive accessing of memory, the degraded
performance of gather-scatter vectorization, and the intractability of paral-
lelization schemes. While other parallel particle codes[?] address some of
these issues, only HOPS remedies all three.

‘While some parallel schemes coarse sort the particles by sub-domains,
we fine sort them by grid cells. This allows us to treat all the particles in



a grid cell together which allows direct vector implementation while at the
same time reducing the number of fetches of field quantities. We think that
HOPS will also perform well on massively parallel computers- even those
without vector capabilities. We believe that super-scalar processor chips
will perform well on our directly indexed inner loops and further more we
believe that cache hits will be maximized as a result of the particles being
ordered within a subdomain (processor.) o

As described above, we have shown HOPS to have a significant perfor-
mance edge over traditional PIC simulation codes for those cases where we
use small enough time steps to guarantee reasonable accuracy of the particle
trajectories. It is only in cases where the time steps are large, corresponding
to inaccurate trajectories, that the PIC methods are faster. Thus for rea-
sonable simulations, HOPS is a superior algorithm on a single processor and
has the added advantage that it scales linearly to large number of parallel
Processors. ‘

Lastly, to hedge our bets we have developed the sibling methods OSOP
(Ordered Storage Ordered Processing) and RSOP (Random Storage Or-
dered Processing) together so that perhaps one of these methods will be
optimal on massively parallel machines. It is our prejudice that OSOP will
retain its edge over RSOP as we move to the MPP platforms.
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